The latest issue off PII is out now!

Read here!
Measurement & Instrumentation

Machine vision optimizes thin-film solar production

Listen to this article

Lasers, high-end mechatronics and sophisticated vision technology combine to improve energy generation.

The JENOPTIK-VOTANTM Solas 100/200 was designed for pattern scribing on thin-film solar modules using laser and/or needles for all the process steps (P1, P2 and P3).

In the standard machines, six industrial cameras combine with VisionPro® vision software from Cognex to maintain process-tool calibration, determine wear status and check that solar modules are processed correctly.  Because set-up, processing and the subsequent quality inspection take just 60 seconds per module, manufacturers can achieve a throughput advantage in the highly competitive sustainable energy market.

Thin-film technology that relies on vapour-deposited or sputtered photoactive semiconductors on a glass substrate, generally use less energy and material, and offer reduced manufacturing costs when compared with silicon-based solar cells. Lower production cost allows manufacturers to make more comfortable pricing decisions even as Germany scales back incentives.

Modern thin-film solar cells consist of a metal layer, a semiconductor layer and a transparent, electrically-conductive oxide layer. In the first step, the VOTAN Solas 100 uses several lasers to scribe patterns in the bottom layer, also called P1. On CIS/CIGS modules, mechanical tools process the two layers above this, P2 and P3. An integrated needle-comb unit precisely scribes the structures into the surface at a speed of up to 1.5 meters per second. Every needle is individually actuated and positioned in this process, allowing the system to adjust quickly to different cell sizes and react accurately to changes. Automatic needle alignment minimizes setup times to achieve greater throughput.

The vision system records the actual position of the tools in seconds. At the same time, three additional cameras measure the P1 track of the automatically-fed solar panel. The cameras supply three reference points for auto-alignment and depending on the location and position of the P1 structures VisionPro provides data to adjust the machine’s coordinate system and correct the tool path. The goal of the process is to minimize displacement of the P1 structures in relation to the P2 and P3 layers to achieve cell efficiency. Processing tools then scribe the P2 and P3 layers to a positional accuracy of 5 µm.

In the final inspection step, two more cameras closely examine the solar module again and inspect the quality with VisionPro vision software looking for micro cracks, broken glass and potential detachment of layer particles.
This machine with VisionPro vision software is quick and easy to integrate in complex production lines. The software ignores non-critical changes in the appearance of the solar panel and concentrates on the features important for the quality of products. The comprehensive tools of this world-leading vision software do not require any complex image pre-processing, which accelerates application development and reduces lifecycle costs.

Cognex UK Ltd, Silverstone Innovation Centre, Silverstone Circuit, Silverstone, Northants NN12 8GX
Tel: +44 (0)1327 856040  Fax: +44 (0)1327 856087 
www.cognex.co.uk
E-mail :sales@cognex.co.uk

Show More

    Would you like further information about this article?

    Add your details below and we'll be in touch ASAP!


    Input this code: captcha

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Back to top button

    Join 25,000 process industry specialists and subscribe to:

    PII has a global network of suppliers ready to help...