German WWTP achieves 97.5% phosphorus load reduction
- Strict environmental discharge limit met by reliable ferric chloride sulphate dosing
- Innovative Qdos CWT chemical metering pump reduces maintenance requirement
- Pumphead still delivering high performance after 8,000 hours’ operation
Upgrade of chemical dosing equipment at a wastewater treatment plant in Germany is delivering high performance on phosphorus removal, says Thomas Klobuczynski, industrial sales engineer, Watson-Marlow Fluid Technology Solutions.
The wastewater treatment plant (WwTP) serving the town of Hessisch-Lichtenau in Germany is taking an innovative approach to chemical metering in a phosphorus removal application.
Two diaphragm pumps, originally used to dose ferric chloride to eliminate phosphate, are being replaced with a single Qdos CWT peristaltic pump from Watson-Marlow Fluid Technology Solutions (WMFTS), in a first for the country. The Fürstenhagen wastewater treatment plant serves an 18,500 population-equivalent (PE) in the Werra-Meissner district of Hessen state.
The primary wastewater processing system includes a mechanical pre-cleaning system with grill and sand trap and an aeration tank with upstream de-nitrification and downstream nitrification, with recirculation. There are two secondary clarification basins and a sludge treatment unit.
Ferric dosing
Chemical dosing with the precipitating agent, ferric chloride sulphate (FeClSO4), is required at the biological treatment stage for consistent phosphorus reduction, because the phosphorus load at the plant inlet is highly variable. Environmental regulations mean discharge of treated effluent to the river Losse is strictly limited to 0.70 milligrams per litre (mg/l) total phosphate.
Single-point dosing is used to deliver the precipitate, with the chemical metering pump drawing the ferric chloride from a 25m3 holding tank. It is then transferred to the dosing point, which is some 30 metres away.
According to the operator, it is essential that dosing is carried out consistently 24/7, but the two legacy diaphragm pumps performing this task, operating alternately, were unreliable and required frequent servicing.
Wastewater operations manager Marco Quehl said, “We need a constant basic amount of precipitant to be dosed, and the quantity needs to increase automatically in line with the phosphorous load at the inlet.”
Corrosion challenge
According to Quehl, the biggest problem with the diaphragm pumps was that the corrosive ferric chloride sulphate left iron residues on the pump valves, resulting in poor sealing against the valve seats and constant minor leaks.
“This required frequent minor maintenance work, and after an average operating time of around 12 months, in which the two diaphragm pumps ran alternately, we had to replace the pumphead, or even the entire pump,” he said. “When the necessary cleaning operations were also considered, this turned out to be time-consuming and expensive in the long run.”
Most chemical dosing pumps need regular maintenance to remain operational. This can take a pump out of service for hours, often needing a back-up pump to provide process continuity. It also takes the full attention of at least one skilled onsite technician.
Time saving
Pumpheads across Watson-Marlow’s entire Qdos range do not need to be taken apart. Instead, the pumphead is simply removed as a single unit and a new one clicked in place. It takes one operative less than a minute, offering substantial benefits in terms of time saving and onsite health and safety, as maintenance staff have no chemical contact.
“We'd already had positive experience with using Watson-Marlow Qdos tube pumps for dosing ferric chloride sulphate and other chemicals,” Quehl said, “which is why we agreed to testing the CWT pump at our site.”
The new Qdos CWT is the world’s first peristaltic pump with no tube, which represents a step-change in the mechanics of peristaltic pump design. The pump underwent its first field trial at Fürstenhagen WwTP as part of a long-term test period.
Reduced stress
While a conventional peristaltic tube is compressed flat via plastic deformation, the Qdos CWT pumphead incorporates an EPDM element, which is elastically compressed against a PEEK track. This reduces material stress and fatigue, providing significantly longer service life, reduced maintenance, and less plant disruption.
The pump is self-priming and there is no fluid back flow, even when the pump is not in operation. This also prevents gas locks, so there is no risk of interruption and no need for additional equipment such as pressure-sustaining valves, air-discharge valves or holding pumps.
Operations manager Bernd Sennhenn said, “The Qdos CWT was installed 12 months ago, and it has been running faultlessly since then. It was possible to install this pump as a direct replacement for a diaphragm pump.”
Reflecting on the trial at Fürstenhagen WWTP, Quehl said, “The Qdos CWT has been in operation for more than 8,000 hours and dosed a total of almost 90,000 litres of precipitating agent and hasn't needed any maintenance.
“In comparison with diaphragm pumps, the Qdos CWT also doses more evenly and with lower pulsation, which protects the pipework and connectors. There's no need for pulsation dampers.”
Continuous operation
The dosing pumps upgrade has saved the plant considerable outlay in time and cost. The Qdos CWT has been operating at an average of 75% of its maximum capacity, demonstrating its capability and reliability at higher performance ranges.
This reliability of the Qdos CWT lies in the design of the technology. The fluid contact element is subjected to low stress levels, and although a second metering pump is kept in reserve at Fürstenhagen, to ensure operational availability, it is practically never needed.
Due to the overall reliability and functionality of the Qdos CWT pumphead, the Fürstenhagen plant has achieved a 97.5% reduction in phosphorus load over the year.
“The new Qdos CWT technology is simply the best when it comes to dosing precipitating agent at our plant. There's no need for anyone else to come to me with other solutions,” concluded Quehl.
Watson-Marlow Fluid Technology Solutions
- 01326370370
- info@wmftg.co.uk
- https://www.wmfts.com/
- Bicklandwater Road, Falmouth Business Park, Falmouth, Cornwall, TR11 4RU GB
About us
Watson-Marlow Fluid Technology Group (WMFTG) peristaltic tube and hose pumps meet requirements including: value for money; low cost of ownership; reliability and ease of maintenance to the food and beverage, chemical, pharmaceutical, mining and many other industries.
We demonstrate how pumps deliver significant process efficiencies over the lifetime of the equipment. Whether performing flavouring addition in food processing, chemical metering in water treatment or mineral recovery, we have a solution which can cut pump downtime and reduce costs through higher accuracy metering and transfer. WMFTG has dedicated application engineers available to help customers make the right pump and tubing choice from a range providing microlitres per minute to 80 cubic metres per hour flow rates.
The only part of the pump to come into contact with the product is the tube or hose. This means there are no seals or valves that can wear or fail. Replacing the tube or hose can be performed quickly and safely. Peristaltic pump benefits include:
Total fluid containment with no seals No ancillaries Handle viscous and abrasive slurries and sludge Self-priming capability Dry running without damage to the pump In addition to their range of positive displacement pumps, Watson-Marlow Fluid Technology Group has added PTFE-lined chemical and industrial hoses to their range. Aflex hoses are reinforced to withstand the most severe conditions and use.
Where we supply to
Europe, Africa, Asia, Australia, South America, North America
Industries we supply to
Automation, Chemicals, Consultants, Components Electronics, Energy and Power, Food and Beverage, Glass Ceramics Cement, Metals and Minerals, OEM, Paper and Pulp, Pharmaceutical Cosmetics Toiletries, Plastics and Rubber, Recycling, Textiles, Tobacco, Water and Wastewater
-
Watson-Marlow to showcase Bredel CIP pump and next-generation fluid handling at PPMA 2025
Watson-Marlow Fluid Technology Solutions (WMFTS) will unveil the latest Bredel CIP pump and its portfolio of next-generation fluid management technologies...
-
Watson-Marlow launches new Bredel CIP pump for beverage producers at drinktec
Watson-Marlow Fluid Technology Solutions (WMFTS) is launching its latest innovation for the brew and beverage market; the Bredel CIP pump,...
-
Bredel Hose Pump Solves Ash Slurry Problem at Biomass Plant
A Bredel 100 hose pump with an NR Transfer hose has been installed at a biomass power station in Pécs,...
-
Watson-Marlow Fluid Technology Solutions introduces WMArchitect Interchangeable Parts for robust single-use assemblies
Watson-Marlow Fluid Technology Solutions (WMFTS) has introduced WMArchitect Interchangeable Parts to improve the longevity of single-use assemblies. The introduction brings...
-
Watson-Marlow to Exhibit Peristaltic Pump and Fluid Path Technologies in London Biotechnology Show Debut
Watson-Marlow to Exhibit Peristaltic Pump and Fluid Path Technologies in London Biotechnology Show Debut Watson-Marlow Fluid Technology Solutions (WMFTS) will...
-
German Waste-to-Energy Plant Prolongs Hose Life Using Bredel NR Transfer Hoses
Abfallverbrennungs- und Biokompost GmbH (AVBKG), the German waste processing plant, has achieved significant hose maintenance and hose life savings. Based...
-
Flexicon PF7 tabletop peristaltic liquid filling machine
-
Sterile ReNu SU Technology cartridge
-
Quantum and ReNu SU Technology cartridge - Make sterile connections in non-sterile environments