The latest issue off PII is out now!

Read here!
Fluids Handling

The right chemistry: the increasing importance of chemical compatibility for control valves

Listen to this article

Whatever chemicals they’re exposed to, control valves need to operate over extended periods of time and prevent contamination of the media they come into contact with. For valve manufacturers, there’s also increasing demand to demonstrate the composition of the valve’s construction materials.

Kieran Bennett, Field Segment Manager for Hygienic – Food & Beverage applications at Bürkert, explains how control valves should be properly matched to the chemicals they come into contact with.

A significant change increasingly seen in the valve market, particularly for hygienic applications, is the focus on the chemical composition of the materials used in valve construction. Today, perhaps half of all users of process valves require a materials certificate, while nearly all diaphragm valve users consider it a necessity. In some cases, such as the pharmaceutical sector, every valve that comes into contact with the media requires full documentation and traceability.

This increased requirement is unsurprising: not only does it give the customer reassurance, but it answers increasingly strong regulatory compliance. In sectors such as food & beverage and pharmaceutical, whether for an on-site check or for compliance with FDA regulations, a valve user needs to be able to prove the chemical composition. For the manufacturer of a PTFE diaphragm valve for example, this means proving traceability to the original batch of manufacture of the chemicals and the quantity used.

The chemical composition of the valve, mainly consisting of its body, seal and potentially the diaphragm that creates a barrier with the media, is an important factor for the quality and safety of the end product. Food and beverage manufacturers, for example, need to prove that there’s no shedding of traces of valve components, which can contaminate or impact the taste or odour of the end product. This means that clarification of the valve’s chemical composition is fundamental, as well as its suitability for long-term use with the media it comes into contact with.

The other main concern in valve material specification is resilience to the chemicals it comes into contact with in order to achieve the expected lifetime. For this reason, proving origin is also an important factor for customers to validate valve quality. For example, a manufacturer can be asked to provide a 3.1 material certificate, which could trace the composition of a stainless steel valve body to clarify carbon content. Lower quality valves can use stainless steel with a higher carbon content, generally making it more brittle and less robust, so validation is a sensible request.

Traceability is vital, but ensuring chemical compatibility can also be a matter of application experience. For example, in many dairies, nitric acid is used as part of the CIP (clean in place) process. Within a ball valve, typically two carbon graphite seals are used in the end caps, however the material isn’t suitable for long-term use with nitric acid, which will degrade the seals, reducing the number of cycles the valve can perform in its lifetime. This is a commonly overlooked example and instead Bürkert would use an angled seat valve with a PTFE seal, suitable for use with nitric acid and ensuring that it can achieve its seven million cycle lifetime. It is important to select the body and seal materials most effective for use with the chemicals in each specific application.

electro pneumatic ball valve

PTFE is commonly used for seals, diaphragms, as well as valve bodies. Resistant to nearly all chemicals, including acids and alkalis, PTFE is an ideal choice for CIP applications. Its carbon-fluorine bonds make it inert and therefore ideal for use with reactive and corrosive chemicals. It is, however, susceptible to cold flow, which is distortion under stress of high temperatures or temperature fluctuations. Advanced PTFE can instead be specified if the application includes extreme temperature changes or frequent sterilisation.

Alternatively for diaphragm use, GYLON is a third generation PTFE, which is used across the widest range of applications. With increased resistance to stress, it can be used with greater fluctuations in temperatures as well as higher temperatures, and has a longer lifetime. EPDM is also frequently used for diaphragms and seals because of its resistance to ozone and hot water, as well as FKM which is often selected for its resistance to oil.

Valve bodies are frequently brass or stainless steel, or a suitable hard plastic variant with sufficient impact resistance. Polypropylene and polyethylene are commonly selected for their resistance to various organic solvents, acids, bases and salts while polyamide is appropriate for use with greases, oils, waxes and fuels. Meanwhile, PPS is ideal for use in high temperatures above 200 degrees centigrade.

The chemical composition of the valve components and the media flowing through it are critical factors for a wide range of applications. The challenge can be complex so engaging the right application expertise is well advised.

Kirsty Anderson
Bürkert Fluid Control Systems
Tel: +44 (0)1285 648761  Fax: +44 (0)1285 648721
Web: www.burkert.co.uk
Email: kirsty.anderson@burkert.com

Burkert
Advance Package

Burkert Fluid Control Systems

burkert-about-us

About us

Bürkert is present in thirtyfive countries around the world. We also work with a large network of distributors and partners, which means we are as close as possible to our customers. This global presence ensures full service and support to all of our customers in every country around the world. Research is the lifeblood of our company.

At Bürkert, we are never satisfied with the status quo and are continually seeking new technologies and solutions for our customers. Every year, our people develop new and highly advanced products and solutions, ranging from integrated process measurement and control units to the most sophisticated systems used in pharmaceutical research. To be a market leader, we are also an R&D leader.

Therefore, our investment in research & development is one of the highest in our industry. In our research centres in Germany and France, 150 people are committed to working for a common future for our company and our customers. We are committed to offering our expertise wherever it is needed, anywhere in the world. This global presence ensures that our advances in fluid control technology are also global.

What we do in a nutshell

Manufacture of process equipment. One of the few manufacturers to provide solutions for the complete control loop.

Where we supply to

UK Ireland, Europe

Industries we supply to

Food and Beverage, Pharmaceutical Cosmetics Toiletries, Water and Wastewater

  • FLOWave | Oil dosing (English)

  • Feldbus Gateway Modul ME43: How to operate FLOWave (DE)

Show More

    Would you like further information about this article?

    Add your details below and we'll be in touch ASAP!


    Input this code: captcha

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Back to top button

    Join 25,000 process industry specialists and subscribe to:

    PII has a global network of suppliers ready to help...